Low-distortion embeddings of infinite metric spaces into the real line

نویسنده

  • Stefan Geschke
چکیده

We present a proof of a Ramsey-type theorem for infinite metric spaces due to Matoušek. Then we show that for every K > 1 every uncountable Polish space has a perfect subset that K-bi-Lipschitz embeds into the real line. Finally we study decompositions of infinite separable metric spaces into subsets that, for some K > 1, K-bi-Lipschitz embed into the real line.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constant-Distortion Embeddings of Hausdorff Metrics into Constant-Dimensional l_p Spaces

We show that the Hausdorff metric over constant-size pointsets in constant-dimensional Euclidean space admits an embedding into constant-dimensional `∞ space with constant distortion. More specifically for any s, d ≥ 1, we obtain an embedding of the Hausdorff metric over pointsets of size s in d-dimensional Euclidean space, into `s ∞ with distortion sO(s+d). We remark that any metric space M ad...

متن کامل

Online Embeddings

We initiate the study of on-line metric embeddings. In such an embedding we are given a sequence of n points X = x1, . . . , xn one by one, from a metric space M = (X,D). Our goal is to compute a low-distortion embedding of M into some host space, which has to be constructed in an on-line fashion, so that the image of each xi depends only on x1, . . . , xi. We prove several results translating ...

متن کامل

On Dominated L 1 Metrics

We introduce and study a class l dom 1 () of l 1-embeddable metrics corresponding to a given metric. This class is deened as the set of all convex combinations of-dominated line metrics. Such metrics were implicitly used before in several constuctions of low-distortion embeddings into l p-spaces, such as Bourgain's embedding of an arbitrary metric on n points with O(log n) distortion. Our main ...

متن کامل

Algorithms for low-distortion embeddings into arbitrary 1-dimensional spaces

We study the problem of finding a minimum-distortion embedding of the shortest path metric of an unweighted graph into a “simpler” metric X. Computing such an embedding (exactly or approximately) is a non-trivial task even when X is the metric induced by a path, or, equivalently, into the real line. In this paper we give approximation and fixed-parameter tractable (FPT) algorithms for minimum-d...

متن کامل

On Low Distortion Embeddings of Statistical Distance Measures into Low Dimensional Spaces

Statistical distance measures have found wide applicability in information retrieval tasks that typically involve high dimensional datasets. In order to reduce the storage space and ensure efficient performance of queries, dimensionality reduction while preserving the inter-point similarity is highly desirable. In this paper, we investigate various statistical distance measures from the point o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2009